What is the Impact of Smartphone Optimization on Long Surveys?
Shimon Sarraf
Jennifer Brooks
James Cole
Xiaolin Wang
National Survey of Student Engagement
Indiana University Bloomington
AAPOR 70th Annual Conference
May, 2015

Introduction & Purpose
Widespread adoption of mobile technologies has dramatically impacted the landscape for survey researchers (Buskirk & Andrus, 2012), and those focusing on college student populations are no exception.

- Optimizing surveys for smartphones is of interest to many but ideal formats are still being developed.
- This study investigated the impact that one smartphone optimization approach had on a long college student survey.

Research Questions
Are there differences in respondent characteristics by smartphone optimization status.

How does optimization impact:
- early abandonment,
- completion,
- item nonresponse,
- duration,
- straight-lining,
- subjective evaluations,
- measurement invariance for scales?
Study Details

- NSSE 2015 winter/spring administration
- 10 US colleges/universities
- Sample: 38,245 first-year & senior students
- Sample divided equally by smartphone optimization availability
- 7,735 respondents; 7,347 included in study

NSSE Desktop View

NSSE Smartphone View

Optimized – Vertical Position

Unoptimized – Vertical Position

Results
Respondent Characteristics

- Optimized respondents looked very similar to unoptimized and desktop groups:
 - Gender, Age, Race/Ethnicity, Parental education, Cumulative grades, Part-time enrollment, Academic major
- Statistically significant differences found but not very large

Early Abandonment

Optimized group less likely to abandon the survey upon viewing the very first page of survey items.

- First-Year Students:
 - Optimized: 5%
 - Unoptimized: 12%
 - Desktop: 4%
- Seniors:
 - Optimized: 22%
 - Unoptimized: 10%

Missing Data

Optimization appears to reduce missing data though variation exists between first-year and senior populations.

Duration

About 18% decrease in duration compared to unoptimized group—even lower than desktop.

- First-Year Students:
 - Optimized: 12.2
 - Unoptimized: 15.0
 - Desktop: 13.0
- Seniors:
 - Optimized: 12.2
 - Unoptimized: 14.6
 - Desktop: 12.9
Straight-lining

Optimized straight-lined less than unoptimized group

<table>
<thead>
<tr>
<th></th>
<th>Optimized First-Year</th>
<th>Unoptimized First-Year</th>
<th>Optimized Seniors</th>
<th>Unoptimized Seniors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1 scales</td>
<td>1.4</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Page 2 scales</td>
<td>0.3</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Page 3 scales</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Subjective Evaluations

Optimization better ease of use and visual design.

<table>
<thead>
<tr>
<th></th>
<th>Optimized First-Year</th>
<th>Unoptimized First-Year</th>
<th>Optimized Seniors</th>
<th>Unoptimized Seniors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of use</td>
<td>59%</td>
<td>41%</td>
<td>55%</td>
<td>40%</td>
</tr>
<tr>
<td>Visual Design</td>
<td>61%</td>
<td>40%</td>
<td>55%</td>
<td>35%</td>
</tr>
</tbody>
</table>

Measurement Invariance

Across the three groups, all first-year and senior scales met scalar invariance criteria, except for Learning Strategies

<table>
<thead>
<tr>
<th></th>
<th>First-Year</th>
<th>Seniors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher-Order Learning</td>
<td>scalar</td>
<td>scalar</td>
</tr>
<tr>
<td>Reflective and Integrative Learning</td>
<td>scalar</td>
<td>scalar</td>
</tr>
<tr>
<td>Quantitative Reasoning</td>
<td>scalar</td>
<td>scalar</td>
</tr>
<tr>
<td>Learning Strategies</td>
<td>variant</td>
<td>variant</td>
</tr>
<tr>
<td>Collaborative Learning</td>
<td>scalar</td>
<td>scalar</td>
</tr>
<tr>
<td>Discussions with Diverse Others</td>
<td>scalar</td>
<td>scalar</td>
</tr>
<tr>
<td>Student-Faculty Interaction</td>
<td>scalar</td>
<td>scalar</td>
</tr>
<tr>
<td>Effective Teaching Practices</td>
<td>scalar</td>
<td>scalar</td>
</tr>
<tr>
<td>Quality of Interactions</td>
<td>scalar</td>
<td>scalar</td>
</tr>
<tr>
<td>Supportive Environment</td>
<td>scalar</td>
<td>scalar</td>
</tr>
</tbody>
</table>

Conclusions

- Optimization can improve data quality even for long surveys, while also maintaining scale properties.
- Smartphone optimized respondent data quality rivals that of desktop respondents.
- Some measures indicate differences between younger and older smartphone respondents in the sample. What does this mean for ongoing optimization efforts?
- College student survey developers should focus on optimization as smartphone usage continues to increase.
Thank you!

Copy of this and past presentations can be found at:

nsse.iub.edu/html/publications_presentations.cfm

Additional NSSE information can be found at:
nsse.indiana.edu

Feel free to contact us with any questions regarding this study or NSSE.
ssarraf@, brooksjl@, and colejs@indiana.edu